HD74BC541A

Octal Buffers/Line Drivers With 3 State Outputs

REJ03D0286-0200Z

Description

The HD74BC541A provides high drivability and operation equal to or better than high speed bipolar standard logic IC by using Bi-CMOS process. The device features low power dissipation that is about $1 / 5$ of high speed bipolar logic IC, when the frequency is 10 MHz . The device has eight inverter drivers with three state outputs in a 20 pin package. When $\overline{\mathrm{G}} 1$ and $\overline{\mathrm{G}} 2$ is low level, this drivers set up output is enable.

Features

- Input/Output are at high impedance state when power supply is off.
- Built in input pull up circuit can make input pins be open, when not used.
- Input is TTL level.
- Wide operating temperature range
$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74BC541AFPEL	SOP-20 pin (JEITA)	FP-20DAV	FP	EL (2,000 pcs/reel)

Function Table

Inputs			Output Y
$\overline{\mathrm{G}} 1$	$\overline{\mathrm{G}} 2$	A	
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

H : High level
L : Low level
X : Immaterial
Z : High impedance

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage	V_{CC}	-0.5 to +7.0	V
Input diode current	I_{K}	± 30	mA
Input voltage	$\mathrm{V}_{\mathbb{I}}$	-0.5 to +7.5	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to +7.5	V
Off state output voltage	$\mathrm{V}_{\text {OUT(off) }}$	-0.5 to +5.5	V
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note: 1. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Min	Typ	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	$\mathrm{V}_{\text {IN }}$	0	-	V_{CC}	V
Ouput voltage	$\mathrm{V}_{\mathrm{OUT}}$	0	-	V_{CC}	V
Operating temperature	Topr	-40	-	85	${ }^{\circ} \mathrm{C}$
Input rise/fall time ${ }^{* 1}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0	-	8	$\mathrm{~ns} / \mathrm{V}$

[^0]
Logic Diagram

Electrical Characteristics ($\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Min	Max	Unit	Test Conditions
Input voltage	V_{IH}		2.0	-	V	
	$\mathrm{V}_{\text {IL }}$		-	0.8	V	
Output voltage	$\mathrm{V}_{\text {OH }}$	4.5	2.4	-	V	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$
		4.5	2.0	-	V	$\mathrm{IOH}=-15 \mathrm{~mA}$
	V_{OL}	4.5	-	0.5	V	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$
		4.5	-	0.55	V	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
Input diode voltage	$\mathrm{V}_{\text {IK }}$	4.5	-	-1.2	V	$\mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
Input current	1	5.5	-	-250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{1}}=0 \mathrm{~V}$
		5.5	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
		5.5	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
Short circuit output current*1	$\mathrm{I}_{\text {os }}$	5.5	-100	-225	mA	$\mathrm{V}_{\text {IN }}=0$ or 5.5 V
Off state output current	$\mathrm{I}_{\mathrm{OzH}}$	5.5	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$
	$\mathrm{I}_{\text {OLL }}$	5.5	-	-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
Supply current	$\mathrm{I}_{\text {CLL }}$	5.5	-	29.5	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \text { All outputs is " } \mathrm{L} \text { " } \end{aligned}$
	$\mathrm{I}_{\mathrm{CCH}}$	5.5	-	0.5	mA	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$ All outputs is "H"
	$I_{\text {ccz }}$	5.5	-	2.5	mA	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$ All outputs is "Z"
	$\mathrm{I}_{\mathrm{CCT}}{ }^{2}$	5.5	-	1.5	mA	$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ or 0.5 V

Notes: 1. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
2. When input by the TTL level, it shows $I_{C C}$ increase at per one input pin.

Switching Characteristics ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

Item	Symbol	$\begin{aligned} \mathrm{Ta} & =25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{cc}} & =5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{Ta}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \% \\ & \hline \end{aligned}$		Unit	Test Conditions
		Min	Max	Min	Max		
Propagation delay time	$\mathrm{t}_{\text {PLH }}$	3.0	6.0	3.0	7.0	ns	See under figure
	$\mathrm{t}_{\text {PHL }}$	3.0	6.0	3.0	7.0		
Output enable time	t_{zH}	3.0	9.0	3.0	11.0	ns	
	t_{zL}	3.0	9.0	3.0	11.0		
Output disable time	t_{Hz}	3.0	8.0	3.0	10.0	ns	
	t_{Lz}	3.0	8.0	3.0	10.0		
Input capacitance	$\mathrm{C}_{\text {IN }}$	3.0 (Typ)		-		pF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Output capacitance	C_{0}	15.0 (Typ)		-		pF	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND

Test circuit

Waveforms-1

Waveforms-2

Notes: 1. $\mathrm{t}_{\mathrm{r}}=2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$
2. Input waveforms: PRR $=1 \mathrm{MHz}$, duty cycle 50%
3. Waveform-A shows input conditions such that the output is "L" level when enable by the output control.
4. Waveform- B shows input conditions such that the output is " H " level when enable by the output control.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
(i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
3. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials
4. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest produc formation before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com)
5. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
6. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
7. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
8. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
9. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

[^0]: Note: 1. This item guarantees maximum limit when one input switches.
 Waveform: Refer to test circuit of switching characteristics.

